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33.1 Introduction

Early speculation

Electrical signals produced by brain activity were
first recorded from the cortical surface in animals by
Richard Caton in 1875 (Caton, 1875) and from the
human scalp by Hans Berger in 1929 (Berger, 1929).
In the 75 years since Berger’s first report, electro-
encephalographic (EEG) activity has been used mainly
for clinical diagnosis and for exploring brain func-
tion. Nevertheless, throughout this period, scien-
tists and others have speculated that the EEG or
other measures of brain activity might serve an
entirely different purpose, that they might provide
the brain with another means of conveying mes-
sages and commands to the external world. While
normal communication and control necessarily
depend on peripheral nerves and muscles, brain
signals such as the EEG suggested the possibility of
non-muscular communication and control, achieved
through a brain–computer interface (BCI).

Recent interest and activity

Despite long interest in this possibility, and despite
isolated demonstrations (e.g., Vidal, 1973; 1977) it
has only been in the past two decades that sustained
research has begun, and only in the past 10 years
that a recognizable field of BCI research, populated
by a rapidly growing number of research groups, has
developed (see Wolpaw et al. (2002) for review). This

recent interest and activity reflect the confluence of
four factors.

The first factor is the greatly increased apprecia-
tion of both the needs and the abilities of people
severely affected by motor disorders such as cere-
bral palsy, spinal cord injury, brain stem stroke,
amyotrophic lateral sclerosis (ALS), and muscular
dystrophies. Modern life-support technology (e.g.,
home ventilators) now enables the most severely
disabled people to survive for many years. Further-
more, it is now clear that even people who have little
or no voluntary muscle control, who may be totally
“locked-in” to their bodies, unable to communicate
in any way, can lead lives that are enjoyable and pro-
ductive if they can be provided with even the most
minimal means of communication and control
(Simmons et al., 2000; Maillot et al., 2001; Robbins 
et al., 2001).

The second factor is the greatly increased under-
standing of the nature and functional correlates of
EEG and other measures of brain activity, under-
standing that has come from animal and human
research. In tandem with this new knowledge have
come better methods for recording these signals,
both in the short and the long term. This new knowl-
edge and technology are guiding and supporting
increasingly sophisticated and effective BCI research
and development.

The third factor is the availability of powerful low-
cost computer hardware that allows complex real-
time analyses of brain activity, which is essential for
effective BCI operation. Much of the online signal
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processing used in present-day BCIs was impossible
or prohibitively expensive until recently.

The fourth factor responsible for the recent surge
in BCI research is new recognition of the remarkable
adaptive capacities of the central nervous system
(CNS), both in normal life and in response to dam-
age or disease. This recognition has generated great
excitement and interest in the possibility of engag-
ing these adaptive capacities to establish new inter-
actions between brain tissue and computer-based
devices, interactions that can replace or augment
the brain’s normal neuromuscular interactions with
the world.

33.2 What a BCI is, and what it is not

The definition of a BCI

A BCI is a communication and control system that
does not depend in any way on the brain’s normal
neuromuscular output channels. The user’s intent is
conveyed by brain signals (such as EEG) rather than
by peripheral nerves and muscles, and these brain
signals do not depend for their generation on 
neuromuscular activity. (Thus, e.g., a device that
uses visual evoked potentials to determine eye-gaze
direction is not a true BCI, for it relies on neuromus-
cular control of eye position, and simply uses the
EEG as a measure of that position.)

Furthermore, as a communication and control
system, a BCI establishes a real-time interaction
between the user and the outside world. The user
receives feedback reflecting the outcome of the BC’Is
operation, and that feedback can affect the user’s
subsequent intent and its expression in brain sig-
nals. For example, if a person uses a BCI to control
the movements of a robotic arm, the arm’s position
after each movement is likely to affect the person’s
intent for the next movement and the brain signals
that convey that intent. Thus, a system that simply
records and analyzes brain signals, without provid-
ing the results of that analysis to the user in an
online interactive fashion, is not a BCI. Figure 33.1
shows the basic design and operation of any BCI.

The fundamental principle of BCI 
operation

Much popular speculation and some scientific
endeavors have been based on the fallacious
assumption that BCIs are essentially “wire-tapping”
or “mind-reading” technology, devices for listening in
on the brain, detecting its intent, and then accom-
plishing that intent directly rather than through mus-
cles. This misconception ignores the central feature
of the brain’s interactions with the external world:
that the motor behaviors that achieve a person’s
intent, whether it be to walk in a certain direction,
speak certain words, or play a certain piece on the
piano, are acquired and maintained by initial and
continuing adaptive changes in CNS function. During
early development and throughout later life, CNS
neurons and synapses continually change both to
acquire new behaviors and to maintain those already
acquired (Salmoni et al., 1984; Ghez and Krakauer,
2000). Such CNS plasticity underlies acquisition of
standard skills such as locomotion and speech and
more specialized skills as well, and it responds to and
is guided by the results achieved. For example, as
muscle strengths, limb lengths, and body weight
change with growth and aging, the CNS adjusts its
outputs so as to maintain the desired results.

This dependence on initial and continuing CNS
adaptation is present whether the person’s intent is
accomplished in the normal fashion, that is, through
peripheral nerves and muscles, or through an artifi-
cial interface, a BCI, that uses brain signals rather
than nerves and muscles. BCI use depends on the
interaction of two adaptive controllers: the user,
who must generate brain signals that encode intent;
and the BCI system, that must translate these sig-
nals into commands that accomplish the user’s
intent. Thus, BCI use is a skill that both user and sys-
tem must acquire and maintain. The user must
encode intent in signal features that the BCI system
can measure; and the BCI system must measure
these features and translate them into device com-
mands. This dependence, both initially and contin-
ually, on the adaptation of user to system and
system to user is the fundamental principle of BCI
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operation; and its effective management is the prin-
cipal challenge of BCI research and development.

33.3 Brain signals that can or might be
used in a BCI

In theory, brain signals recorded by a variety of
methodologies might be used in a BCI. These metho-
dologies include: recording of electrical or magnetic
fields; functional magnetic resonance imaging (fMRI);
positron emission tomography (PET); and infrared
(IR) imaging. In reality, however, most of these meth-
ods are at present not practical for clinical use due 
to their intricate technical demands, prohibitive
expense, limited real-time capabilities, and/or early
stage of development. Only electrical field recording is
likely to be of significant practical value for clinical
applications in the near future.

Alternative recording methods for electrical 
signals

The electrical fields produced by brain activity can
be recorded from the scalp (EEG), from the cortical

surface (electrocorticographic activity, (EcoG)), or
from within the brain (local field potentials (LFPs))
or neuronal action potentials (spikes)). These three
alternatives are shown in Fig. 33.2. Each recording
method has advantages and disadvantages. EEG
recording is easy and non-invasive, but EEG has lim-
ited topographical resolution and frequency range
and may be contaminated by artifacts such as elec-
tromyographic (EMG) activity from cranial muscles
or electrooculographic (EOG) activity. ECoG has
better topographical resolution and frequency
range, but requires implantation of electrode arrays
on the cortical surface, which has as yet been done
only for short periods (e.g., a few days or weeks) in
humans. Intracortical recording (or recording within
other brain structures) provides the highest resolution
signals, but requires insertion of multiple electrode
arrays within brain tissue and faces as yet unre-
solved problems in minimizing tissue damage and
scarring and ensuring long-term recording stability.

The ultimate practical value of each of these record-
ing methods will depend on the range of communi-
cation and control applications it can support and
the extent to which its limitations can be overcome.

BCI system

Signal
acquisition

and processing

Translation
algorithm

Device
commandsSignal features Figure 33.1. Design and operation of

a BCI system (modified from

Wolpaw et al., 2002; head image

from www.BrainConnection. com).

Electrophysiological signals

reflecting brain activity are acquired

from the scalp, from the cortical

surface, or from within the brain

and are processed to measure

specific signal features (such as

amplitudes of evoked potentials or

EEG rhythms or firing rates of single

neurons) that reflect the user’s

intent. These features are translated

into commands that operate a

device, such as a word-processing

program, a wheelchair, or a

neuroprosthesis.
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The issue of the relative value of non-invasive (i.e.,
EEG) methods, moderately invasive (e.g., ECoG)
methods, and maximally invasive (e.g., intracorti-
cal) methods remains unresolved. On the one hand,
stable, practical, and safe techniques for long-term
recording within the brain may not prove that diffi-
cult to develop. On the other hand, despite expecta-
tions to the contrary (e.g., Donoghue, 2002), for
actual practical applications, the information trans-
fer rates possible with intracortical methods may
turn out to be no greater than those achievable with
less invasive methods (e.g., ECoG). Thorough evalu-
ations of the characteristics and capacities of each
recording method are needed.

33.4 Present-day BCIs

Human BCI experience to date has been confined
almost entirely to EEG studies and short-term ECoG

studies. Intracortical BCI data come mainly from
animals, primarily monkeys. The available human
data indicate that EEG-based methods can certainly
support simple applications and may be able to
support more complex ones. Invasive methods
appear able to support complex applications, but
the issues of risk and long-term recording stability
are not yet resolved.

EEG-based BCIs

Three different kinds of EEG-based BCIs have been
tested in humans. They differ in the particular EEG
features that serve to convey the user’s intent. Figure
33.3(a) illustrates a P300-based BCI (Farwell and
Donchin, 1988; Donchin et al., 2000). It uses the
P300 component of the event-related brain poten-
tial, which appears in the centroparietal EEG about
300 ms after presentation of a salient or attended
stimulus. The P300 BCI system described by
Donchin’s group flashes letters or other symbols in
rapid succession. The letter or symbol that the user
wants to select produces a P300 potential. By detect-
ing this P300 potential, the BCI system can deter-
mine the user’s choice. This BCI method appears
able to support operation of a simple word-
processing program that enables users to write
words at a rate of one or a few letters per minute.
Improvements in signal analysis may substantially
increase its capacities. At the same time, the effects
of long-term usage of a P300-based BCI on its com-
munication performance remain to be determined:
P300 size and reliability may improve with contin-
ued use so that performance improves, or P300 may
habituate so that performance deteriorates.

Figure 33.3(b) illustrates a BCI based on slow cor-
tical potentials (SCPs), which last from 300 ms to
several seconds (Birbaumer et al., 1999; 2000;
Kübler et al., 2001). In normal brain function, nega-
tive SCPs reflect preparatory depolarization of the
underlying cortical network, while positive SCPs are
usually interpreted as a sign of cortical disfacilita-
tion or inhibition. Birbaumer and his colleagues
have shown that, with appropriate training, people
can learn to control SCPs so as to produce positive
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Figure 33.2. Recording sites for electrophysiological signals

used by BCI systems. (a) EEG is recorded by electrodes on 

the scalp. (b) ECoG is recorded by electrodes on the cortical

surface. (c) Action potentials from single neurons or LFPs are

recorded by electrode arrays inserted into the cortex or other

brain areas.
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or negative shifts. Furthermore, they can use this
control to perform basic word-processing and other
simple control tasks such as accessing the Internet.
Most important, people who are severely disabled
by ALS, and are otherwise unable to communicate,
are capable of achieving SCP control and using it for
effective communication.

Figure 33.3(c) illustrates a BCI based on sensori-
motor rhythms (Wolpaw et al., 1991; 2003; Wolpaw
and McFarland, 1994; 2003; Kostov and Polak , 2000;
Roberts and Penny, 2000; Pfurtscheller et al., 2003a).
Sensorimotor rhythms are 8–12 Hz (mu) and 18–26 Hz
(beta) oscillations in the EEG recorded over sensori-
motor cortices. In normal brain function, changes
in mu and/or beta rhythm amplitudes are associ-
ated with movement and sensation, and with motor
imagery as well. Several laboratories have shown that
people can learn to control mu or beta rhythm ampli-
tudes in the absence of movement or sensation and

can use this control to move a cursor to select letters
or icons on a screen or to operate a simple orthotic
device. Both one- and two-dimensional control 
are possible. Like the P300- and SCP-based BCIs,
sensorimotor rhythm-based BCIs can support 
basic word-processing or other simple functions.
They may also support multi-dimensional control
of a neuroprosthesis or other device such as a 
robotic arm.

These present-day BCI methods all rely on selec-
tion protocols that begin at fixed times set by the sys-
tem. However, in real-life applications, BCIs in which
the onset and timing of operation are determined 
by the user may be preferable. Efforts to develop
such user-initiated methods, based on detection of
certain features in the ongoing EEG, have begun
(Mason and Birch, 2000). Present-day BCIs also
depend on visual stimuli. People who are severely
disabled (e.g., locked-in) may not be able to follow
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Figure 33.3. Non-invasive EEG-based BCI methods demonstrated in humans (modified from Kübler et al., 2001). These methods

use EEG recorded from the scalp. (a) P300 evoked potential BCI (Farwell and Donchin, 1988; Donchin et al., 2000). A matrix of

possible selections is shown on a screen. Scalp EEG is recorded over centroparietal cortex while these selections flash in succession.

Only the selection desired by the user evokes a large P300 potential (i.e., a positive potential about 300ms after the flash). (b) Slow

cortical potential BCI (Birbaumer et al., 1999; 2000; Kübler et al., 2001). Users learn to control SCPs to move a cursor to a target (e.g.,

a desired letter or icon) at the bottom (more positive SCP) or top (more negative SCP) of a computer screen. (c) Sensorimotor

rhythm BCI (Wolpaw and McFarland, 1994; 2003; Wolpaw et al., 2002; 2003). Scalp EEG is recorded over sensorimotor cortex. Users

control the amplitude of a 8–12Hz mu rhythm (or a 18–26 Hz beta rhythm) to move a cursor to a target at the top of the screen or to

a target at the bottom (or to additional targets at intermediate locations). Frequency spectra (top) for top and bottom targets

indicate that this user’s control is clearly focused in the mu-rhythm frequency band. Sample EEG traces (bottom) also show that the

mu rhythm is prominent with the top target and minimal with the bottom target. Trained users can also control movement in two

dimensions.
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such stimuli, especially if they change rapidly. In this
case, BCI systems (e.g., P300-based) that use audi-
tory rather than visual stimuli may prove effective.

ECoG-based BCIs

Figure 33.4(a) illustrates a BCI based on sensori-
motor rhythms in ECoG recorded by electrode arrays
placed on the cortical surface. ECoG has much
higher spatial and temporal resolution than scalp-
recorded EEG. It can resolve activity limited to a few
mm2 of cortical surface, and it includes not only mu
and beta rhythms, but higher-frequency gamma
(�30 Hz) rhythms, which are very small or absent in
EEG. ECoG studies to date have been limited to
short-term experiments in individuals temporarily
implanted with electrode arrays prior to epilepsy
surgery. They reveal sharply focused ECoG activity
associated with movement and sensation and with
motor imagery (Pfurtscheller et al., 2003b; Leuthardt
et al., 2004). Furthermore, with only a few minutes
of training, people can learn to use such imagery to
control cursor movement (Fig. 33.4(a)) (Leuthardt 
et al., 2004).

The rapidity of this learning, which occurs much
faster than that typically found with scalp-recorded
sensorimotor rhythms, combined with the high 
topographical resolution and wide spectral range 
of ECoG and its freedom from artifacts such as 
EMG, suggests that ECoG-based BCIs might support
communication and control superior to that possible
with EEG-based BCIs. Their clinical use will depend
on development of fully implanted systems (i.e.,
systems that do not require wires passing through
the skin) and on strong evidence that they can pro-
vide safe and stable recording over periods of years.

Intracortical BCIs

Figure 33.4(b) shows data from a BCI based on the
firing rates of a set of single cortical neurons recorded
by a fine-wire array chronically implanted in mon-
key motor cortex. Intracortical BCIs studied to date
have used such neuronal activity (Kennedy and Bakay,
1998; Chapin et al., 1999; Kennedy et al., 2000; Taylor

et al., 2002; 2003; Serruya et al., 2002; Carmena et al.,
2003; Musallam et al., 2004) and have shown that it
can support rapid and accurate control of cursor
movements in one, two, or even three dimensions.
Related data suggest that LFPs, which can be
recorded by the same electrode arrays and reflect
nearby synaptic and neuronal activity, might also
support BCI operation (Pesaran et al., 2002). The
basic strategy in the single-neuron studies has been
to define the neuronal activity associated with stan-
dardized limb movements, then to use this activity
to simultaneously control comparable movements
of a cursor, and finally to show that the neuronal
activity can continue to control cursor movements
in the absence of actual limb movements. In the
most thorough and successful study to date (Taylor
et al., 2002), in which neuronal control of three-
dimensional cursor movement was observed over
many sessions, neuronal activity was found to adapt
over sessions so as to improve cursor control. Figure
33.4(b) illustrates this adaptation. Like the compa-
rable adaptations seen with EEG- and ECoG-based
BCIs, it reflects the fundamental BCI principle
described above: dependence on initial and contin-
uing adaptation of system to user and user to 
system.

The major issues that must be resolved prior to
clinical use of intracortical BCIs include their long-
term safety, the stability of their signals in the face of
cortical tissue reactions to the implanted electrodes,
and whether their capabilities in actual practical
applications (e.g., in neuroprosthesis control) sub-
stantially exceed those of less invasive BCIs.

33.5 Signal processing

A BCI records brain signals and processes them to
produce device commands. This signal processing
has two stages. The first stage is feature extraction,
the calculation of the values of specific features of
the signals. These features may be relatively simple
measures such as amplitudes or latencies of specific
potentials (e.g., P300), amplitudes, or frequencies of
specific rhythms (e.g., sensorimotor rhythms), or 
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Figure 33.4. Invasive BCI methods. (a) Electrode arrays on the cortical surface. Human ECoG control of vertical cursor movement

using specific motor imagery to move the cursor up and rest (i.e., no imagery) to move it down (from Leuthardt et al., 2004). The

electrodes used for online control are circled and the spectral correlations of their ECoG activity with target location (i.e., top or

bottom of screen) are shown. Electrode arrays for Patients B, C, and D are green, blue, and red, respectively. The particular imagined

actions used are indicated. The substantial levels of control achieved with different types of imagery are evident. (The dashed lines

indicate significance at the 0.01 level). For Patients C and D, the solid and dotted r2 spectra correspond to the sites indicated by the

dotted and solid line locators, respectively. (b) Control of three-dimensional cursor movements by single neurons in motor cortex of

a monkey (from Taylor et al., 2003). The left graph shows the improvement over training sessions of the average correlation between

the firing rate of an individual cortical neuron and target direction. The right graph shows the resulting improvement in performance

(measured as the mean target radius needed to maintain a 70% target hit rate). As the firing rates of the neurons that are controlling

cursor movement become more closely correlated with target direction, the size of the target can be steadily reduced.
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firing rates of individual cortical neurons, or they
may be more complex measures such as spectral
coherences. To support effective BCI performance,
the feature-extraction stage of signal processing
must focus on features that encode the user’s intent,
and it must extract those features as accurately as
possible.

The second stage is a translation algorithm that
translates these features into device commands.
Features such as rhythm amplitudes or neuronal fir-
ing rates are translated into commands that specify
outputs such as cursor movements, icon selection,
or prosthesis operation. Translation algorithms may
be simple (e.g., linear equations), or more complex
(e.g., neural networks, support vector machines)
(Müller et al., 2003).

To be effective, a translation algorithm must
ensure that the user’s range of control of the chosen
features allows selection of the full range of device
commands. For example, suppose that the feature is
the amplitude of a 8–12 Hz mu rhythm in the EEG
over sensorimotor cortex; that the user can vary this
feature over a range of 2–10 �V; and that the applica-
tion is vertical cursor movement. In this case, the
translation algorithm must ensure that the 2–10 �V
range allows the user to move the cursor both up
and down. Furthermore, the algorithm must accom-
modate spontaneous variations in the user’s range
of control (e.g., if diurnal change, fatigue, or another
factor changes the available voltage range) (e.g.,
Ramoser et al., 1997). Finally the translation algorithm
should have the capacity to at least accommodate,
and at best encourage, improvements in the user’s
control. For example, if the user’s range of control
improves from 2–10 to 1–15 �V, the translation algo-
rithm should take advantage of this improvement to
increase the speed and/or precision of cursor move-
ment control.

This need for continual adaptation of the transla-
tion algorithm to accommodate spontaneous and
other changes in the signal features is in accord with
the fundamental principle of BCI operation (i.e., the
continuing dependence on system/user and user/
system adaptation), and has important implications.
First, it means that new algorithms cannot be 

adequately evaluated simply by offline analyses.
They must also be tested online, so that the effects of
their adaptive interactions with the user can be
assessed. This testing should be long term as well as
short term, for important adaptive interactions may
develop gradually. Second, the need for continual
adaptation means that simpler algorithms, for which
adaptation is usually easier and more effective, have
an inherent advantage. Simple algorithms (e.g., lin-
ear equations) should be abandoned for complex
alternatives (e.g., neural networks) only when online
as well as offline evaluations clearly show that the
complex alternatives provide superior performance.

33.6 Potential users

In their present early state of development, BCIs are
likely to be of practical value mainly for those with
the most severe neuromuscular disabilities, people
for whom conventional assistive communication
technologies, all of which require some measure of
voluntary muscle control, are not viable options.
These include people with ALS who elect to accept
artificial ventilation (rather than to die) as their dis-
ease progresses, children and adults with severe
cerebral palsy who lack any useful muscle control,
patients with brain stem strokes who are left only
with minimal eye movement control, those with
severe muscular dystrophies or chronic peripheral
neuropathies, and possibly people with short-term
disorders associated with extensive paralysis (such
as Landry-Guillain-Barré syndrome). It is also possi-
ble that people with less severe disabilities, such 
as those with high-cervical spinal cord injuries, 
may find BCI technology preferable to conventional
assistive communication methods that co-opt
remaining voluntary muscle control (e.g., methods
that depend on gaze direction or EMG of facial mus-
cles). BCIs might eventually also prove useful for
those with less severe motor disabilities. The even-
tual extent and impact of BCI applications will
depend on the speed and precision of the control
that can be achieved and on the reliability and con-
venience of their use.
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People with disabilities of different origins are
likely to differ in the BCI methods that are of most
use to them. For some, the CNS deficits responsible
for their disability may affect their ability to control
particular brain signals and not others. For example,
the motor cortex damage that can be associated
with ALS or the subcortical damage of severe cere-
bral palsy may compromise generation or control of
sensorimotor rhythms or neuronal activity. In such
individuals, other brain signals, such as P300 poten-
tials or neuronal activity from other brain regions,
might provide viable alternatives.

Prosaic and even ostensibly trivial factors are also
likely to play significant roles in the eventual practi-
cal success of BCI applications. Issues such as the
steps involved in donning and doffing electrodes or
in accessing a BCI application, or a person’s appear-
ance while using it, may greatly affect the number of
people interested in the system and the extent to
which they actually use it.

33.7 Applications

The range of possible applications

BCIs have a wide range of possible practical applica-
tions, from extremely simple to very complex. Simple
BCI applications have already been demonstrated
in the laboratory and in limited clinical use. They
include systems for answering Yes/No questions,
managing basic environmental control (e.g., lights,
temperature), controlling a television, or opening
and closing a hand orthosis (Miner et al., 1998;
Birbaumer et al., 1999; Pfurtscheller et al., 2003a).
Such simple systems can be configured for basic
word-processing or for accessing the Internet (e.g.,
Mellinger et al., 2003). For people who are totally
paralyzed (i.e., “locked-in”) and thus cannot use
conventional assistive communication devices (see
Volume II, Chapter 22), these simple BCI applica-
tions may make possible lives that are pleasant and
even productive. Indeed, several recent studies indi-
cate that severely paralyzed people, if they have
good supportive care and the capacity for basic

communication, may enjoy a reasonable quality of
life and are only slightly more likely to be depressed
than people without physical disabilities (Simmons
et al., 2000; Maillot et al., 2001; Robbins et al., 2001).
Thus, simple BCI applications appear to have a
secure future in their potential to make a difference
in the lives of extremely disabled people.

More complex BCI applications might support
control of devices such as a motorized wheelchair, a
robotic arm, or a neuroprosthesis that enables the
multi-dimensional movements of a paralyzed limb.
While most present efforts are focused on develop-
ment of invasive BCI systems to support such appli-
cations, non-invasive EEG-based BCIs also appear
to offer the possibility of such control (Wolpaw 
and McFarland, 1994; 2003). The ultimate practical
importance of such BCI applications will depend on
their capacities and reliability, on their acceptance
by specific user population groups, and on whether
they provide clear advantages over conventional
methodologies.

Process control versus goal selection

Two alternative approaches underlie BCI applica-
tions: process control and goal selection. In the
process-control approach, the BCI directly controls
every aspect of device operation. This approach
underlies most current efforts to develop intracorti-
cal BCI systems. For neuroprosthesis operation, this
approach vests in a specific set of cortical neurons
(and/or other brain neurons) ongoing interactive
control of all the muscles that move a limb so as to
carry out the user’s intent. Thus, the approach
requires that the BCI supports complex high-speed
interactions; and it requires that cortical neurons
assume functions normally performed by lower-
level (e.g., spinal cord) neurons.

In the alternative approach of goal selection, the
BCI simply determines the user’s intent, which is
then executed by the system. This approach under-
lies most efforts to develop non-invasive or mini-
mally invasive BCI methods. While it has been 
most often used for simple applications (e.g., Yes/No),
this approach can apply also to the most complex
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applications, such as multidimensional control of a
neuroprosthesis. For example, the user might com-
municate the command: “pick up the book.” The
complex control of the shoulder, arm, and hand
muscles that execute that command would then be
orchestrated by a device that stimulates muscles
and simultaneously monitors the resulting move-
ments so as to accomplish the task. This design, in
which task execution is delegated to lower-level
structures, is similar in principle to normal motor
control, in which subcortical and spinal areas play
crucial parts, particularly in managing high-speed
real-time interactions between the CNS and the
limb it is controlling.

The process-control approach clearly requires
that the BCI have information transfer rates and
capacities for high-speed real-time interaction sub-
stantially greater than those required by the goal-
selection approach. Which approach can ultimately
provide the most flexible, effective, and natural
movement control remains to be determined.

Establishing the practical value of BCI 
applications

The establishment of BCI applications as clinically
valuable methods will require comprehensive clin-
ical testing that demonstrates their long-term 
reliability and shows that people actually use the
applications and that this use has beneficial effects
on factors such as mood, quality of life, productivity,
etc. Especially in the initial stages of their develop-
ment, this will often entail configuring applications
that match the unique needs, desires, and physical
and social environments of each user. While the cost
of BCI equipment is relatively modest, current sys-
tems require substantial and continuing expert over-
sight, which is extremely expensive and currently
limited to a few research laboratories. As a result,
these systems are not readily available to most
potential users. Thus, the widespread clinical use of
BCI applications will also depend on the extent to
which the need for such oversight can be reduced.
BCI systems must be easy to set up and easy to main-
tain if they are to have substantial practical impact.

33.8 Nature and needs of BCI research 
and development

BCI research and development is an inherently mul-
tidisciplinary task. It involves neuroscience, engi-
neering, applied mathematics, computer science,
psychology, and rehabilitation. BCI research is not
merely a signal-processing problem, a neurobiolog-
ical problem, or a human-factors problem, though it
has often been viewed in each of these limited ways
in the past. The need to select appropriate brain sig-
nals, to record them accurately and reliably, to ana-
lyze them appropriately in real time, to control
devices that provide functions of practical value to
people with severe disabilities, to manage the com-
plex short-term and long-term adaptive interac-
tions between user and system, and to integrate BCI
applications into the lives of their users, means that
the expertise and efforts of all these disciplines are
critical for success. This reality requires either that
each BCI research group incorporate all relevant
disciplines, or that groups with different expertises
collaborate closely. Such interactions have been
encouraged and facilitated by recent meetings
drawing BCI researchers from all relevant disci-
plines and from all over the world (Wolpaw et al.,
2000; Vaughan et al., 2003), and by comprehensive
sets of peer-reviewed BCI articles (see Wolpaw et al.,
2000; Vaughan et al., 2003; Nicolelis et al., 2004 for
review).

Up to now, BCI research has consisted primarily
of demonstrations, of limited studies showing that a
specific brain signal processed in a specific way 
by specific hardware and software and applied to a
specific device can supply communication or con-
trol of a specific kind. Successful development and
widespread clinical use depend on moving beyond
demonstrations. They require effective and efficient
techniques for comparing, combining, and evaluat-
ing alternative brain signals, analysis methods, and
applications, and thereby optimizing BCIs and the
usefulness of their applications. This requirement
has been the impetus for the original and ongoing
development of BCI2000, the first general-purpose
BCI system (Schalk et al., 2004). Founded on a
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design made up of four modules (signal acquisition,
signal processing, device control, and system opera-
tion), BCI2000 can accommodate a wide variety of
alternative signals, processing methods, applica-
tions, and operating protocols. Thus, it greatly facil-
itates the comprehensive quantitative comparative
studies critical for continued progress. BCI2000, with
source code and documentation, is freely available
to research laboratories (at http://www. bci2000.org)
and is already in use by many laboratories through-
out the world.

Summary

The possibility that EEG activity or other electro-
physiological measures of brain function might pro-
vide new non-muscular channels for communication
and control (i.e., BCIs) has been a topic of specula-
tion for many years. Over the past 15 years, numer-
ous productive BCI research and development
programs have been initiated. These endeavors
focus on developing new augmentative communi-
cation and control technology for those with severe
neuromuscular disorders, such as ALS, brain stem
stroke, and spinal cord injury. The immediate 
objective is to give these users, who may be totally
paralyzed, or “locked-in,” basic communication
capabilities so that they can express their desires to
caregivers or even operate word-processing pro-
grams or neuroprostheses. Current BCIs determine
the intent of the user from electrophysiological sig-
nals recorded non-invasively from the scalp (EEG)
or invasively from the cortical surface (ECoG) or
from within the brain (neuronal action potentials).
These signals are translated in real-time into com-
mands that operate a computer display or other
device. Successful operation requires that the user
encode commands in these signals and that the BCI
derive the commands from the signals. Thus, the
user and the BCI system need to adapt to each other
both initially and continually so as to ensure stable
performance. This dependence on the mutual adap-
tation of user to system and system to user is the
fundamental principle of BCI operation.

BCI research and development is an inherently
interdisciplinary problem, involving neurobiology,
psychology, engineering, mathematics, computer
science, and clinical rehabilitation. Its future
progress and eventual practical impact depend on a
number of critical issues. The relative advantages
and disadvantages of non-invasive and invasive
methods remain to be determined. On the one
hand, the full capacities of non-invasive methods
are not clear; on the other hand, the long-term
safety and stability of invasive methods are uncer-
tain. The optimal signal processing techniques also
remain to be determined. On the one hand, simple
algorithms facilitate the continuing adaptation that
is essential for effective BCI operation; on the other
hand, more complex algorithms might provide bet-
ter communication and control. Appropriate user
groups and applications, and appropriate matches
of one to the other, remain to be determined.
Present BCIs, which have relatively limited capaci-
ties, may be most useful for those with the most
severe disabilities. At the same time, the CNS
deficits associated with some disorders may impair
ability to use certain BCI methods. Widespread clin-
ical use depends also on factors that affect the user
acceptance and the practicality of augmentative
technology, including ease of use, cosmesis, provi-
sion of those communication and control capacities
that are most important to the user, and minimiza-
tion of the need for continuing expert oversight.
With proper recognition and effective engagement
of all these issues, BCI systems could eventually be
important new communication and control options
for people with motor disabilities and might also
provide to people without disabilities as a supple-
mentary control channel or a control channel useful
in special circumstances.
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